

[目的]

ハードウェア記述言語(HDL: Hardware Description Language)を使用したハードウェ ア(ディジタル論理回路)の設計手法を学習する。また、学習用 FPGA ボードと HDL シ ミュレータによる回路の動作検証を通して、実際にハードウェアがどのように動作するのか 理解する。

[概要]

HDL の一つとして広く利用されている Verilog-HDL を使用して、ディジタル論理回路、 すなわち組合せ回路や順序回路を記述する。記述した回路が正しく動作することを、学習用 FPGA ボードおよび Verilog-HDL シミュレータを用いて確認する。

HDLによるディジタル論理回路の設計は、一般的には図1に示す設計フロー1で行われる。

図 1 HDL によるディジタル論理回路設計フローの例(単純化したもの)

本実験では、仕様に基づいて HDL による記述を行い(実装)、期待通りの動作をするこ とをシミュレータ・FPGA²を用いてテストする(検証)という工程を、受講生が各自行う。 一連の設計フローを経験し、それをレポートという形に明文化することを通じて、HDL に よるハードウェア設計の実際を理解する。

¹ この設計フローは、単純化して図示したものであり、実際の設計においては、実装と検証 は様々なレベルで繰り返し行われる。また点線のフローは生じないことが望ましい。

² FPGA(Field Programmable Gate Array)は、開発者が任意のディジタル論理回路を、 ソフトウェアの様にプログラムして実現することが可能な、半導体 LSI チップである。

[使用する教材]

- ・実験指導書(この資料)
- ・副教材:キットで学ぶ FPGA チャレンジャー Xilinx Artix-7版
- <副教材内容>
- ・テキスト冊子
- ・学習用 FPGA ボード Basys3 ボード
 - ・FPGA: Xilinx 社製 Artix-7 XC7A35T

・ユーザ I/O デバイス :

LED 緑 16 個、スライドスイッチ 16 個、プッシュボタン 5 個、リセットボタン 7 セグメント LED 4 ケタ、VGA ポート、I/O ピン 6pin(Pmod) x 4 個、他

[実験内容]

以下の3項目について実験を行い、HDLで記述し合成した回路が期待通りに動作することを、FPGAボードとシミュレータを用いて確認する。

- 1. 組合せ回路を FPGA ボードで動かす
- 2. 順序回路を FPGA ボードで動かす・シミュレーションで何が起こっているか確認する
- 3. 合成した回路の規模を知る・課題回路を作成して動作を検証する

1. 組合せ回路を FPGA ボードで動かす

組合せ回路は、AND/OR/NOTから構成される論理関数に相当するディジタル論理回路で ある。すなわち、<u>出力はその時の入力によってのみ決まる</u>。入力の組合せで出力が決まる ので、組合せ回路という。

本項目においては FPGA 上に組合せ回路を実現して期待通りに動作することを確認する。 *手順*

- 1-1. STEP01 を読み、学習用 FPGA ボードと FPGA について理解する。
- 1-2. STEP02 を読み、P.22 の Basys3 ボード動作チェックを行う。

1-3. STEP03 に従い、Vivado のプロジェクトを作成する。プロジェクトの場所は、各自の マイドキュメント内とする。最も単純な Verilog 記述を作成する。(P.32 ON_Circuit.v)

- 1-4. STEP04 に従い、合成・デバイスの制約・ビットストリーム生成(コンパイル)・デバイスへ書き込み(JTAG プログラミング)、を行うことで、FPGA ボードに作成した Verilog 記述に相当する回路をプログラムし動作を確認する。
- 1-5. STEP05 に従い、課題 05 (AND 回路) を作成し動作を確認する。
- 1-6. STEP06 に従い、課題 06 (OR 回路) を作成し動作を確認する。
- 1-7. レポート課題1「組合せ回路の実装・テスト」を行う。

→ 仕様(何を作ったか)、実装(どうやって作ったか)、およびテスト結果につい てレポートに記載すること。

1-8. (オプション) STEP07 に従い、セレクタ回路を作成し動作を確認する。

2. 順序回路を FPGA ボードで動かす・シミュレーションで何が起こっているか 確認する

順序回路は、メモリ要素(フリップフロップなど)を含むディジタル論理回路である。す なわち、<u>出力はその時の入力と、以前の状態から決まる</u>。入力の順序により出力が決まる ので、順序回路という。本項目においては、FPGA 上に順序回路を実現して、期待通りに 動作することを確認する。また、回路の動作は非常に高速(100MH z で動作)であるため、 シミュレーションにより動作の詳細な様子を観察して理解する。

<u>手順</u>

- 2-1. STEP08 に従い、**課題 08-1(非同期リセット)**および**課題 08-2(同期リセット)**を実施する。フリップフロップ(DFF)の動作を FPGA ボードにおいて確認する。
- 2-2. STEP09 に従い、課題 08-1 と課題 08-2 のフリップフロップ(DFF)の動作をシミュレー ション(Vivado のシミュレータ)で確認する。

→ 非同期リセットと同期リセットの違いを理解する。(班内でお互いに説明せよ)

- 2-3. STEP10 に従い、課題 10-1 (カウンタ)、課題 10-2 (100MHz クロック分周して 1Hz を作成)および課題 10-3 (1 秒ごとにカウントアップして LED 表示) を実施する。 各回路の動作を確認する (FPGA ボード、および Vivado のシミュレータ)。
- 2-4. レポート課題2「順序回路の実装・テスト」を行う。
 - → 仕様(何を作ったか)、実装(どうやって作ったか)、およびテスト結果につい てレポートに記載すること。

2-5. (オプション)STEP11 に従い、スイッチ入力を数えるカウンタ回路の動作を確認する。

3. 作成した回路の規模を知る・課題回路を作成して動作を検証する

本項目においては、これまで作成した回路の規模を調べる。また、課題回路を作成する。 FPGA は任意の回路をプログラムできる半導体 LSI チップであるが、内部にはメモリ要 素である Flip-Flop と、論理関数を実現するための真理値表に相当する LUT(Look Up Table)が数多く存在しており、それらの間をプログラマブルな配線スイッチで接続すること で任意の回路を実現する。以上を踏まえて、FPGA 上に作成した回路の規模を調べる。 *手順*

- 3-1. 組合せ回路(レポート課題1など)および順序回路(レポート課題2、カウンタなど) の、フリップフロップ使用量、LUT使用量、乗算器使用量を調べる。(レポート中には、 これらに関する調査結果を記載すること。)
- 3-2. STEP12 を読み、課題 12-1:7 セグ LED デコーダ回路の動作を理解する。

(P.166 課題 12-2 の、7 セグ LED カウンタ回路はオプションとする)

- 3-3. 任意の 4 ケタ数字を 7 セグメント LED に表示する回路を、講義資料 WEB サイトより ダウンロードし、FPGA ボードにおいて動作を確認する。
- 3-4. レポート課題 1,2 が終わってない場合は取り組む。レポート作成を進める。

3-5. (オプション)レポート課題3「すこし複雑なディジタルシステムの実装・テスト」を行う。

[課題]

ソースコードなどの参考資料は、講義資料 WEB サイト内の以下の URI を参照すること。 http://www.ced.is.utsunomiya-u.ac.jp/lecture/2019/jikken2/hdl/

レポート課題1:組合せ回路の実装・テスト

積和演算回路を Verilog-HDL で実装・テストする。

- ◆ 機能仕様
- 入力: FPGA ボード上のスライドスイッチ(SW)の、SW15~8 を入力 A[7:0]、SW7~0 を入力 B[7:0]とする。
- 出力: A と B を乗算し、本年度の数値(10 進数の 2019) を加算した値を S (Sum の 略)とし、FPGA ボード上の LED (LD0~LD15) に S[15:0]の値を出力する。
- ◆ 実装仕様
- ・ファイル名は任意とする。

・加算器・乗算器は Verilog-HDL の加算演算子・乗算演算子を使って記述する。

◆ 検証仕様

・FPGAボードを用いて検証を行う。以下の入力値の組合せに対する出力値を記録し、 期待値と一致するかを確認する。結果はOKかNGかで示す。

テスト	入力		出力期待値		出力値	結果
番号	A[7:0]	B[7:0]	S[15:0]		S[15:0]	OK/NG
1	0	0	2019	16'b0000011111100011		
2	1	0	2019	16'b0000011111100011		
3	0	1	2019	16'b0000011111100011		
4	1	1	2020	16'b0000011111100100		
5	2	3	2025	16'b0000011111101001		
6	100	100				
7	250	250				
8	255	255				

・自分の学籍番号をテスト入力値に設定し、出力値(LED 状態)を、カメラで撮影して レポートに画像として貼る。撮影の際、加算器への入力値は、自分の学籍番号の下二桁 の数字を入力 A、入力 B を 100 とし、LED の出力が期待値と同じになることを示す。 例)学籍番号:172985 入力 A = 85,入力 B =100 出力期待値 S = 85*100+2019 = 10519 = 16'b001010010010111

・フリップフロップ・LUT・乗算器使用量を調べる事。(本資料 P.8 補足 2 を参照)

図 2 積和演算器のブロック図

レポート課題2: 順序回路の実装・テスト

自分の学籍番号の数字を、順番に 1 秒間に 1 桁ずつ LED に表示する順序回路を Verilog-HDL にて実装・テストする。

- ◆ 機能仕様
- 入力: プッシュボタン BTND(start)を押すことで学籍番号の表示を開始する合図と する。プッシュボタン BTNC(reset)を押すと初期状態に戻ることとする。
- 出力: FPGA ボード上の4つのLED に自分の学籍番号を順番に1秒間に1桁ずつ、
 4ビットの2進数として表示する。1秒間の時間は、FPGA ボードの100MHz
 クロック信号を100M 回カウントすることで計測する。
- ◆ 実装仕様
- ・ファイル名は任意とする。
- ・以下の状態遷移図および状態遷移表に従った、ステートマシン³を作成する。

図3 課題2の状態遷移図

表1 課題2の状態遷移表(学籍番号:172985の場合)

状態 (state)	ア BTNC (reset)	、力 BTND (start)	· 次状態 (state')	出力 LED[3:0]	備考
X	1	X	0	X	-
0	0	0	0	0	-
	0	1	1	0	-
1	0	Х	2	1	100M クロック経過後
2	0	Х	3	7	100M クロック経過後
3	0	Х	4	2	100M クロック経過後
4	0	Х	5	9	100M クロック経過後
5	0	Х	6	8	100M クロック経過後
6	0	Х	7	5	100M クロック経過後
7	0	Х	0	0	-

表中のXは、任意の値を示す(Don't care という)。すなわち1行目は任意の状態において BTNC の値が1だったら、BTND の値に関わらず状態0に遷移することを示す。

³ カウンタを用いることで、任意の状態遷移を持つ順序回路を構成することができる。回路 の制御部となる順序回路をステートマシンと呼ぶ。

◆ 検証仕様

・シミュレータを用いて検証を行う。実時間(数秒間=数千万クロック)のシミュレー ション結果を確認するのは時間がかかるので、シミュレータを用いた検証の際は、2 ク ロックに1桁ずつ LED への出力信号を変化させることとする。

・入力値の組合せに対する出力値を記録し、期待値と一致するかを確認する。結果は OKかNGかで示す。以下に検証に用いる表の例を示す。

クロッ	入力	力	出力期待値	出力値	結果
ク時刻	BTNC	BTND	LED[3:0]	LED[3:0]	OK/NG
	(reset)	(start)			
0	1	0	0		
1	0		0		
2		1	0		
3		0	1		
4			1		
5			7		
6			7		
7			2		
8			2		
9			9		
10			9		
11			8		
12			8		
13			5		
14			5		
15			0		
16			0		

・信号の値は、シミュレーション波形の画面キャプチャを行うか、シミュレータのテキ スト出力を、レポートに貼り付ける事。(本資料 P.8 補足 1 を参照)

・フリップフロップ・LUT 使用量を調べる事。

レポート課題3(オプション): 少し複雑なディジタルシステムの実装・テスト

以下の3つの課題のうち1つ以上を選択して、機能仕様・実装仕様・検証仕様を作成し(すなわち設計を行い)、HDLによる実装とFPGAボードもしくはシミュレーションによる検証を行う。

- 課題 3-1 4ビット算術論理演算装置(ALU)
- 課題 3-2 8ビット簡易電卓(加算もしくは乗算)
- 課題 3-3 スロットマシンゲーム

検証結果として、以下の3つを含める事。

- ・シミュレーション時の入力と出力の値をテキストで出力、もしくは波形の画面写真
- ・フリップフロップ・LUT・乗算器使用量
- ・動作中の FPGA ボードの写真

<u>課題 3-1 4 ビット算術論理演算装置(ALU)</u>

図 4に示す4ビット算術論理演算装置(ALU)を設計・実装・テストする。

【必須】この ALU は、4 ビットデータ A, B、及びキャリーCin を入力とし、op で指定さ れる演算を行い、演算結果 S、キャリーCout を出力する。また、S がゼロの時、Z に1を 出力する。入力は、スライドスイッチを 8 つ使って A[3:0], B[3:0]を設定し、4 ビットのプッ シュスイッチで op[2:0]および Cin を設定する。出力は、S[3:0]を 1 ビットずつ"0"か"1"を 7 セグメント LED の 1 桁ごとに表示し、Cout と Z を LED に表示する。

ор	演 算 内 容	Ζ	Cout
0	S <= ~A	*	
1	S <= A & B	*	
2	S <= A B	*	
3	S <= A ^ B	*	
4	S <= A + B	*	*
5	S <= A + B + Cin	*	*
6	S <= A - B	*	*
7	S <= A - B + Cin	*	*

演算結果は * 印の付いた出力に反映

図 4 4ビット算術論理演算装置

課題 3-2 8 ビット簡易電卓(加算もしくは乗算)

8ビットの数字を加算もしくは乗算可能な、簡易電卓を設計・実装・テストする。

【必須】計算結果は、16進数の数字として7セグメントLEDに表示する。ユーザは、値 を設定するときはスライドスイッチ(8ビット)を設定する。操作方法は以下の通りである。

・BTNL を押すと値1として記憶し、7セグメント LED に表示する。

・BTNCを押すと値2として記憶し、7セグメントLEDに表示する。

- ・BTNR を押すと、2つの値の和を7セグメントLEDに表示する。
- 【オプション】

・BTND を押すと、2つの値の積を7セグメント LED に表示する。

課題 3-3 スロットマシンゲーム

以下のゲームを設計・実装・テストする

【必須】7 セグメント LED に数字3 ケタを表示し、時間と共に高速に変化する。ユーザが プッシュボタンを押すと、数字が停止する。

【オプション】システムは各桁の数字が全て一致している場合、「当たり」と判定して、ユー ザに示す。(例:LEDを賑やかに変化させる。)

[補足資料]

補足 1. Verilog-HDL シミュレーションにおいて信号値を出力する方法

レポート作成時、動作の様子を示すためには、画面写真をキャプチャして貼りつけるか、 信号値の変化をテキストとして貼りつける必要がある。シミュレーションの際に、テストベ ンチの Verilog のモジュール内に図 5に示す記述を加えると、信号値の変化をテキストで出 力することが出来る。(%b:2進数、%d:10進数、%o:8進数、%h:16進数)

initial \$monitor(\$stime, ~inO=%b in1=%b out=%b~, inO, in1, out);

図 5 シミュレーションにおける信号値を出力するための記述例

補足 2. FPGA のコンパイル結果・リソース使用量・性能を知る方法

FPGA のコンパイル(合成・配置配線)を行った後、Vivadoの Design Summary を見ることで、リソース使用量や性能を知ることが出来る。(画面右の Project Summary ウィンドウ内で、下にスクロールするとグラフが現れる)

図 6 Vivadoの Project Summary の読み方

[参考文献]

- [1] 小林優, "入門 Verilog-HDL 記述", CQ 出版.
- [2] 小林優, "初めてでも使える HDL 文法概要① Verilog-HDL 編", デザインウェーブ マガジン, No.13, pp.150-159.
- [3] 小林優, "初めてでも使える Verilog HDL 文法ガイド ―― 記述スタイル編", http://www.kumikomi.net/archives/2009/07/verilog_hdl.php
- [4] 内田智久, "Verilog-HDL 入門", http://research.kek.jp/people/uchida/educations/verilogHDL/

日付	氏名	修正内容
2012 年度	-	実験内容:シミュレータによる論理回路設計
まで		
2013/3/27	大川 猛	教育用 FPGA ボード(Basys2)およびシミュレータ
		を用いた実験内容への変更
2013/4/3	大川 猛	語句の間違いなどの微修正
2014/4/7	大川 猛	課題1を積和演算の内容に変更
		補足6に乗算器使用量の調べ方を追加
		課題2のパラメータを2014年度用に修正
		課題 3-1 の入力が足りなかった問題を修正
		課題 3-3 を新規追加
2015/4/7	大川 猛	課題2のパラメータを2015年度用に修正
2016/4/6	大川 猛	課題2のパラメータを2016年度用に修正
2017/4/6	大川 猛	Basys3 ボードを用いた実験内容に変更
2017/5/8	大川 猛	課題1の期待値が間違っていたので修正(17→2017)
2017/5/15	大川 猛	課題2のボタン名が間違っていたので修正
		課題1・2のファイル名は自由とした。
		課題2の検証のための表は自由形式とした。
		課題3-1の機能仕様に不備があったので修正
2018/4/4	大川 猛	語句の間違いなどの微修正
2019/4/11	鶴田 真理子	課題 1,2 のパラメータを 2019 年度用に修正
		課題3をオプション課題に変更
2019/5/22	鶴田 真理子	課題1の入出力表の出力期待値を2進数表記に変更
		手順 3-2 のページ番号の誤りを修正
2019/6/3	鶴田 真理子	課題2のボタン名が間違っていたので修正

[改訂履歴]