

[目的]

ハードウェア記述言語(HDL: Hardware Description Language)を使用したハードウェ ア(ディジタル論理回路)の設計手法を学習する。また、学習用 FPGA ボードと HDL シ ミュレータによる回路の動作検証を通して、実際にハードウェアがどのように動作するのか 理解する。

[概要]

HDL の一つとして広く利用されている Verilog-HDL を使用して、ディジタル論理回路、 すなわち組合せ回路や順序回路を記述する。記述した回路が正しく動作することを、学習用 FPGA ボードおよび Verilog-HDL シミュレータを用いて確認する。

HDLによるディジタル論理回路の設計は、一般的には図 1に示す設計フロー¹で行われる。

図 1 HDL によるディジタル論理回路設計フローの例(単純化したもの)

本実験では、仕様に基づいて HDL による記述を行い(実装)、期待通りの動作をするこ とをシミュレータ・FPGA²を用いてテストする(検証)という工程を、受講生が各自行う。 一連の設計フローを経験し、それをレポートという形に明文化することを通じて、HDL に よるハードウェア設計の実際を理解する。

¹ この設計フローは、単純化して図示したものであり、実際の設計においては、実装と検証 は様々なレベルで繰り返し行われる。また点線のフローは生じないことが望ましい。

² FPGA(Field Programmable Gate Array)は、開発者が任意のディジタル論理回路を、 ソフトウェアの様にプログラムして実現することが可能な、半導体 LSI チップである。

[使用する教材]

- ・実験指導書(この資料)
- ・副教材:キットで学ぶ FPGA チャレンジャー Xilinx Spartan 3E 版
- <副教材内容>
- ・テキスト冊子
- ・学習用 FPGA ボード Basys2 ボード
 - •FPGA: Xilinx 社製 Spartan 3E XCS100E
 - ・メモリ: SDRAM 16MByte、 EEPROM 16MByte

・ユーザーI/O デバイス :

LED8 個、プッシュスイッチ4個、スライドスイッチ8個

7 セグメント LED 4 ケタ、PS2 ポート、VGA ポート、I/O ピン 6pin(Pmod) x 4 個

[実験内容]

以下の3項目について実験を行い、HDLで記述し合成した回路が期待通りに動作することを、FPGAボードとシミュレータを用いて確認する。

- 1. 組合せ回路を FPGA ボードで動かす
- 2. 順序回路を FPGA ボードで動かす・シミュレーションで何が起こっているか確認する
- 3. 合成した回路の性能を知る・課題回路を作成して動作を検証する

1. 組合せ回路を FPGA ボードで動かす

組合せ回路は、AND/OR/NOTから構成される論理関数に相当するディジタル論理回路で ある。すなわち、<u>出力はその時の入力によってのみ決まる</u>。入力の組合せで出力が決まる ので、組合せ回路という。

本項目においては FPGA 上に組合せ回路を実現して期待通りに動作することを確認する。 *手順*

1-1. STEP01 を読み、学習用 FPGA ボードと FPGA について理解する。

1-2. STEP02 のうちライセンス導入(補足1)と P.22 の Basys2 ボード動作チェックを行う。

1-3. STEP03 に従い、ISE のプロジェクトを作成する。プロジェクトの場所は、各自のマ

イドキュメント内とする。最も単純な Verilog 記述を作成する。(P.29 ON_Circuit.v) 1-4. STEP04 に従い、文法チェック・ピン配置決定・配置配線・コンパイル(コンフィギュ

- レーションファイルの作成)・コンフィギュレーションファイル転送を行うことで、 FPGA ボードに作成した Verilog 記述に相当する回路をプログラムし動作を確認する。
- 1-5. STEP05 に従い、課題 05 (AND 回路) を作成し動作を確認する。
- 1-6. STEP06 に従い、課題 06 (OR 回路) を作成し動作を確認する。
- 1-7. レポート課題1「組合せ回路の実装・テスト」を行う。

→ 仕様(何を作ったか)、実装(どうやって作ったか)、およびテスト結果につい てレポートに記載すること。

1-8. (オプション) STEP07 に従い、セレクタ回路を作成し動作を確認する。

2. 順序回路を FPGA ボードで動かす・シミュレーションで何が起こっているか 確認する

順序回路は、メモリ要素(フリップフロップなど)を含むディジタル論理回路である。す なわち、<u>出力はその時の入力と、以前の状態から決まる</u>。入力の順序により出力が決まる ので、順序回路という。本項目においては、FPGA 上に順序回路を実現して、期待通りに 動作することを確認する。また、回路の動作は非常に高速(50MH z で動作)であるため、 シミュレーションにより動作の詳細な様子を観察して理解する。

<u>手順</u>

- 2-1. STEP08 に従い、**課題 08-1(非同期リセット)**および**課題 08-2(同期リセット)**を実施する。フリップフロップ(DFF)の動作を FPGA ボードにおいて確認する。
- 2-2. STEP09 に従い、課題 08-1 と課題 08-2 のフリップフロップ(DFF)の動作をシミュレー ション(ISim)で確認する。

→ 非同期リセットと同期リセットの違いを理解する。(班内でお互いに説明せよ)

- 2-3. STEP10 に従い、課題 10-1 (カウンタ)、課題 10-2 (50MHz クロック分周して 1Hz を作成)および課題 10-3 (1 秒ごとにカウントアップして LED 表示)を実施する。 各回路の動作を確認する (FPGA および ISim)。
- 2-4. レポート課題2「順序回路の実装・テスト」を行う。
 - → 仕様(何を作ったか)、実装(どうやって作ったか)、およびテスト結果につい てレポートに記載すること。

2-5. (オプション)STEP11 に従い、スイッチ入力を数えるカウンタ回路の動作を確認する。

3. 作成した回路の性能を知る・課題回路を作成して動作を検証する

本項目においては、これまで作成した回路の性能を調べる。また、課題回路を作成する。 FPGA は任意の回路をプログラムできる半導体 LSI チップであるが、内部にはメモリ要 素である Flip-Flop と、論理関数を実現するための真理値表に相当する LUT(Look Up Table)が数多く存在しており、それらの間をプログラマブルな配線スイッチで接続すること で任意の回路を実現する。数多くの配線スイッチを通過して信号が伝播する為、一般的に専 用 LSI チップを作るよりも回路の動作速度は遅くなる。以上を踏まえて、FPGA 上に作成 した回路の性能を調べる。

手順

- 3-1. 組合せ回路(レポート課題1など)および順序回路(レポート課題2、カウンタなど) の、フリップフロップ使用量、LUT使用量、動作可能周波数(Fmax)を調べる。(レポー ト中に、性能に関する調査結果を記載すること。)
- 3-2. STEP12 を読み、課題 12-1:7 セグ LED デコーダ回路の動作を理解する。

(P.128 課題 12-2 の、7 セグ LED カウンタ回路はオプションとする)

- 3-3. 任意の4ケタ数字を7セグメント LED に表示する回路を、講義資料 WEB サイトより ダウンロードし、FPGA ボードにおいて動作を確認する。
- 3-4. レポート課題3「すこし複雑なディジタルシステムの実装・テスト」を行う。

[課題]

ソースコードなどの参考資料は、講義資料 WEB サイト内の以下の URI を参照すること。 http://www.ced.is.utsunomiya-u.ac.jp/lecture/2013/jikken2/hdl/

レポート課題1:組合せ回路の実装・テスト

4ビット入力、5ビット(キャリー付)出力の加算器をVerilog HDLで実装・テストする。

- ◆ 機能仕様
- 入力: FPGAボード上のスライドスイッチ(SW)の、左4個を入力A[3:0]、右4個を 入力B[3:0]とする。
- 出力: A と B を加算した値を S (Sum の略)とし、FPGA ボード上の LED の右から 5 個に S[4:0]の値を出力する。
- ◆ 実装仕様
- ・ファイル名はAdder4.vとする。
- ・加算器は Verilog-HDL の加算演算子を使って記述する。
- ◆ 検証仕様

・FPGA ボードを用いて検証を行う。以下の入力値の組合せに対する出力値を記録し、

期待値と	一致する	っかを確認す	-る。	結果は	OKか	・NGか	で示す。
				1 E 2 I T T T T			/ 0

テスト	入	力	出力期待值	出力値	結果
番号	A[3:0]	B[3:0]	S[4:0]	S[4:0]	OK/NG
1	0	0	0		
2	1	0	1		
3	0	1	1		
4	1	1	2		
5	2	2	4		
6	4	4	8		
7	8	8	16		
8	15	15	30		

・自分の学籍番号に基づくテスト入力値をスイッチに設定した際の、出力値(LED 状態) を、カメラで撮影してレポートに画像として貼る。撮影の際、加算器への入力値は、自 分の学籍番号の下二桁目の数字を入力 A、下一桁目の数字を入力 B とし、LED の出力 が期待値と同じになることを示す。

例) 学籍番号: 102985 入力 A=8, 入力 B=5 出力期待值 O=13

・フリップフロップ使用量、LUT使用量、動作可能周波数(Fmax)を調べる事。

図 2 加算器のブロック図

レポート課題2: 順序回路の実装・テスト

自分の学籍番号の数字を、順番に 1 秒間に 1 桁ずつ LED に表示する順序回路を Verilog-HDL にて実装・テストする。

- ◆ 機能仕様
- 入力: プッシュボタン(BTN3 = start)を押すことで学籍番号の表示を開始する合図と する。リセットボタン(BTN0 = reset)を押すと初期状態に戻ることとする。
- 出力: FPGA ボード上の4つのLED に自分の学籍番号を順番に1秒間に1桁ずつ、
 4ビットの2進数として表示する。1秒間の時間は、FPGA ボードの50MHz
 クロック信号を50M回カウントすることで計測する。
- ◆ 実装仕様
- ・ファイル名は Number Display.v とする。
- ・以下の状態遷移図および状態遷移表に従った、ステートマシン3を作成する。

図3 課題2の状態遷移図

表1 課題2の状態遷移表(学籍番号:102985の場合)

状態	入力		次状態	出力	備考
(state)	BTN0	BTN3	(state')	LED[3:0]	
Х	1	Х	0	Х	-
0	0	0	0	0	-
0	0	1	1	0	-
1	0	Х	2	1	50M クロック経過後
2	0	Х	3	0	50M クロック経過後
3	0	Х	4	2	50M クロック経過後
4	0	Х	5	9	50M クロック経過後
5	0	Х	6	8	50M クロック経過後
6	0	Х	7	5	50M クロック経過後
7	0	Х	0	0	-

表中のXは、任意の値を示す(Don't care という)。すなわち1行目は任意の状態において BTN0の値が1だったら、BTN3の値に関わらず状態0に遷移することを示す。

³ カウンタを用いることで、任意の状態遷移を持つ順序回路を構成することができる。回路 の制御部となる順序回路をステートマシンと呼ぶ。

◆ 検証仕様

・シミュレータを用いて検証を行う。実時間(数秒間=数百万クロック)のシミュレー ション結果を確認するのは時間がかかるので、シミュレータを用いた検証の際は、2 ク ロックに1桁ずつ LED への出力信号を変化させることとする。

・以下の入力値の組合せに対する出力値を記録し、期待値と一致するかを確認する。結果は OK か NG かで示す。

クロッ	入力		出力期待値	出力値	結果
ク時刻	BTN0	BTN3	LED[3:0]	LED[3:0]	OK/NG
	(reset)	(start)			
0	1	0	0		
1	0		0		
2		1	0		
3		0	1		
4			1		
5			0		
6			0		
7			2		
8			2		
9			9		
10			9		
11			8		
12			8		
13			5		
14			5		
15			0		
16			0		

・シミュレーション時に、入力と出力の値をテキストで出力しレポートに貼り付ける事 (補足4を参照)。

・シミュレーション波形の画面キャプチャを、レポートに貼り付ける事。

・フリップフロップ使用量、LUT使用量、動作可能周波数(Fmax)を調べる事。

レポート課題3: 少し複雑なディジタルシステムの実装・テスト

以下の3つの課題のうち1つ以上を選択して、機能仕様・実装仕様・検証仕様を作成 し(すなわち設計を行い)、HDLによる実装とFPGAボードもしくはシミュレーショ ンによる検証を行う。 課題3-1 4ビット算術論理演算装置(ALU) ◆組合せ回路

◆順序回路

- 課題 3-2 8ビット簡易電卓(加算専用)
- 課題 3-3 8ビット2進数トレーニングゲーム ◆順序回路

検証結果として、以下の3つを含める事。

- ・シミュレーション時の入力と出力の値をテキストで出力
- ・シミュレーション波形の画面写真
- ・動作中の FPGA ボードの写真

<u>課題 3-1 4 ビット算術論理演算装置(ALU)</u>

図 4に示す4ビット**算術論理演算装置**(ALU)を設計・実装・テストする。このALUは、 4ビットデータA, B、及びキャリーCinを入力とし、opで指定される演算を行い、演算結 果S、キャリーCoutを出力する。また、Sがゼロの時、Zに1を出力する。

入力は、8 ビットのスライドスイッチで A[3:0], B[3:0]を設定し、4 ビットのプッシュス イッチで op[3:0]を設定する。出力は、S[3:0]を7 セグメント LED に表示し、Cout と Z を LED に表示する。

op	演 算 内 容	Z	Cout
0	S <= ~A	*	
1	S <= A & B	*	
2	S <= A B	*	
3	S <= A ^ B	*	
4	S <= A << B	*	
5	S <= A >> B	*	
8	S <= A + B	*	*
9	S <= A + B + Cin	*	*
a	S <= A - B	*	*
b	S <= A - B + Cin	*	*

演算結果は*印の付いた出力に反映

図 4 4ビット算術論理演算装置

<u>課題 3-2 8 ビット簡易電卓(加算専用)</u>

8ビットの数字を加算可能な、簡易電卓を設計・実装・テストする。 計算結果は、16進数の数字として7セグメントLEDに表示する。ユーザは、値を設定す るときはスライドスイッチ(8ビット)を設定する。操作方法は以下の通りである。

・BTN1を押すと値1として記憶し、7セグメントLEDに表示する。

・BTN2を押すと値2として記憶し、7セグメントLEDに表示する。

・BTN3を押すと、2つの値の和を7セグメントLEDに表示する。

課題 3-3 8 ビット 2 進数トレーニングゲーム

システムは7セグメント LED に 16 進数の数字 2 ケタ (4+4=8 ビット)を表示し、ユー ザはその数字に相当する 2 進数(8 ビット)をスライドスイッチを用いて設定し、プッシュボ タンを押す。それに対して、システムは 16 進数と 2 進数の数字が一致しているかどうかを 判定し、結果を7セグメント LED もしくは LED に表示するゲームを設計・実装・テスト する。

[補足資料]

補足 1. 開発環境の構築について

演習用 PC への Xilinx 社製開発環境(ISE)のインストールは完了しているが、各ユーザ(受 講生)が以下の手順でライセンスファイルをインストールする必要がある。

A. Xilinx ライセンス設定マネージャーを起動する。(スタートメニュー→すべてのプログ

 $\neg \land \rightarrow X$ ilinx Design Tools $\rightarrow ISE$ Design Suite $14.2 \rightarrow Accessories \rightarrow Manage Xilinx Licenses)$

B. Xilinx ライセンス設定マネージャー(副教材 P.13 の②)の画面で、Manage Xilinx Licenses タブをクリックして選択する。

C. 副教材 P.17 (1)の画面が表示されていることを確認する。

D. Copy License...のボタンをクリックして、ライセンスファイルを指定する。

ライセンスファイルの場所:「¥¥fs1.ced.is.utsunomiya-u.ac.jp¥vol1¥share¥学部授業関連 ¥2013 年度前期¥情報工学実験 II¥HDL¥Xilinx.lic」

補足 2. Xilinx ISE 設計ツールの起動方法

実験で用いる Xilinx ISE 設計ツールは、「スタートメニュー→すべてのプログラム→ Xilinx Design Tools→ISE Design Suite 14.2→ISE Design Tools→Project Navigator」か ら起動する。

補足 3. Digilent Adept ツールの起動方法

FPGA 基板の動作テストや回路書き換えの際に用いる、Digilent Adept ツールは、「ス タートメニュー→すべてのプログラム→Digilent→Adept→Adept」から起動する。

補足 4. Verilog-HDL シミュレーションにおいて信号値を出力する方法

レポート作成時、動作の様子を示すためには、画面写真をキャプチャして貼りつけるか、 信号値の変化をテキストとして貼りつける必要がある。シミュレーションの際に、テストベ ンチの Verilog のモジュール内に図 5に示す記述を加えると、信号値の変化をテキストで出 力することが出来る。(%b:2進数、%d:10進数、%o:8進数、%h:16進数)

initial						
	\$monitor(\$stime,	″in0=%b	in1=%b out=%b",	in0,	in1,	out);

図 5 シミュレーションにおける信号値を出力するための記述例

補足 5. FPGA のコンパイル時に動作周波数の制約を記述する方法

FPGA のコンパイル(合成・配置配線)を行う際に、図 6の記述を UCF ファイル内にピン配置と併せて行う事で、動作周波数に関する制約をツールに知らせることが出来る。なお、クロック信号は CLK とすること。

コンパイルの結果、50MHzで動作する回路が合成できたかどうかを確認する必要がある。

NET CLK TNM_NET = USER_CLOCK; TIMESPEC TS_USER_CLOCK = PERIOD USER_CLOCK 50 MHz;

図 6 動作周波数制約(50MHz) UCF ファイル記述の例

補足 6. FPGA のコンパイル結果・リソース使用量・性能を知る方法

FPGA のコンパイル(合成・配置配線)を行った後、ISE の Design Summary を見ることで、コンパイルの結果としてエラーや警告があるかどうか、リソース使用量や性能を知ることが出来る。

	DisplayStudentNumb	er Project S	tatus (03/27/201	3 - 08:08:10)		
Project File:	Timingxise	Parser I	rrors:	No Errors		1
Module Name:	Timing	Impleme	ntation State:	ntation State: Programming File Generat		
Target Device:	xc3s100e-5cp132	• E	rrors:	No Errors		】 エラーが右わげ
Product Version:	ISE 14.2	• W	larnings:	2 Warnings	(0 new)	
Design Goal:	Balanced	• R	outing Results:	All Signals	Completely Routed	ここに表示される
Design Strategy:	Xilinx Default (unlocked)	۰ т	iming Constraints	All Constra	ints Met	
Environment:	System Settings	• F	inal Timing Score	e 0 <u>(Timing</u>	Report)]
						-
	Device U	tilization Su	mmary		E	リソース使用量は
Logic Utilization		Used	Available	Utilization	Note(s)	
Number of Slice Flip Flops		27	1,920	1%		ここに表示される
Number of 4 input LUTs		41	1,920	2%		
Number of occupied Slices		33	960	3%		FIIPFIOPの剱と
Number of Slices contai	Number of Slices containing only related logic		33	100%		しての粉た破詞する
Number of Slices contai	ning unrelated logic	0	33	0%		「「「「」」」、「」」、「」」、「」、「」、「」、「」、「」、「」、「」、「」、
Total Number of 4 input LU	Ts	64	1,920	3%		
Number used as logic		41				
Number used as a route	-thru	23				
Number of bonded <u>IOBs</u>		7	83	8%		
Number of BUFGMUXs		1	24	4%		
Average Fanout of Non-Clo	ock Nets	2.41				」 件能に関する概要は
	Perfor	mance Summ	hary		E	ここに衣示される
Final Timing Score:	0 (Setup: 0, Hold: 0, Component Switching Limit: 0)		Pinout Data:	Pinout Report	詳細た性能を知るにけ	
Routing Results:	All Signals Completely Routed		Clock Data:	Clock Report	〒1443日間であるにあ	
Timing Constraints:	All Constraints Met					Timing Constraints
						のリンクをクリックする

補足 7. FPGA の最大動作周波数を知る方法

Timing Constraints のリンクをクリックすることで、図 8のタイミング制約結果レポート が表示される。赤枠で囲んだ部分に、フリップフロップからフリップフロップの間の 遅延時間の最大値がここに表示される。この値の逆数が、最大動作周波数である。

•	Constraint	Check	Worst Case Slack	Best Case Achievable	Timing Errors	Timing Score	
1 Yes	TS USER CLOCK = PERIOD TIMEGRP "USER CLOCK" 50 MHz ···	SET···	14.078ns ··	5.922ns	00	0 0	

図 8 タイミング制約結果レポートの例

[参考文献]

- [1] 小林優, "入門 Verilog-HDL 記述", CQ 出版.
- [2] 小林優, "初めてでも使える HDL 文法概要① Verilog-HDL 編", デザインウェーブ マガジン, No.13, pp.150-159.
- [3] 小林優, "初めてでも使える Verilog HDL 文法ガイド —— 記述スタイル編", http://www.kumikomi.net/archives/2009/07/verilog_hdl.php
- [4] 内田智久, "Verilog-HDL 入門",http://research.kek.jp/people/uchida/educations/verilogHDL/

[改訂履歴]

日付	氏名	修正内容
2012 年度	-	実験内容:シミュレータによる論理回路設計
まで		
2013/3/27	大川 猛	教育用 FPGA ボード (Basys2) およびシミュレータ
		を用いた実験内容への変更
2013/4/3	大川 猛	語句の間違いなどの微修正