電気回路

第3章 回路解析の基本

3-1-1 行列式の定義

- サラスの展開

3-1-2 クラメルの公式

- 連立1次方程式

- 行列式

- クラメルの公式

\[A \bar{x} = \bar{b} \]

\[|A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2j} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{nn} \end{vmatrix} \]

\[|A| \neq 0 \] のとき

\[x_j = \frac{1}{A} \begin{vmatrix} a_{11} & a_{12} & \cdots & b_1 \\ a_{21} & a_{22} & \cdots & a_{1j} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nj} \\ a_{n1} & a_{n2} & \cdots & b_n \end{vmatrix} \]
3-2 簡単な回路(I)

3-2-1 枝電流による解法(枝電流解析法)→例題3-4

各枝に流れる電流 \(I_1, I_2, I_3 \) および閉路 1, 2 と、その向きを図のように仮定

節点C: \(I_1 - I_2 - I_3 = 0 \) (3-7)

閉路1: \(E_1 - V_1 - E_2 - V_2 = E_1 - R_1 I_1 - E_2 - R_2 I_2 = 0 \) (3-8)

閉路2: \(V_2 - V_3 - V_4 = R_2 I_2 - R_3 I_3 - R_4 I_3 = 0 \) (3-10)

例題3-4
行列式

よって \(R_1 I_1 + R_2 I_2 = E_1 - E_2 \)

\[
\begin{align*}
R_2 I_2 - (R_3 + R_4) I_3 &= 0 \\
I_1 - I_2 - I_3 &= 0
\end{align*}
\]

または

\[
\begin{bmatrix}
R_1 & R_2 & 0 \\
0 & R_2 & -(R_3 + R_4) \\
1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix} =
\begin{bmatrix}
E_1 - E_2 \\
0 \\
0
\end{bmatrix}
\]

行列式は

\[
|A| = \begin{vmatrix}
R_1 & R_2 & 0 \\
0 & R_2 - (R_3 + R_4) & 0 \\
1 & -1 & -1
\end{vmatrix}
= -R_1 R_2 - (R_1 + R_2)(R_3 + R_4)
\]

クラメルの公式

\[
I_1 = \frac{\begin{vmatrix}
E_1 - E_2 & R_2 & 0 \\
0 & R_2 & -(R_3 + R_4) \\
1 & 0 & 1
\end{vmatrix}}{R_1 R_2 + (R_1 + R_2)(R_3 + R_4)} (E_1 - E_2)
\]

\[
I_2 = \frac{\begin{vmatrix}
R_1 & E_1 - E_2 & 0 \\
0 & 0 & -(R_3 + R_4) \\
1 & 0 & 1
\end{vmatrix}}{R_1 R_2 + (R_1 + R_2)(R_3 + R_4)} (E_1 - E_2)
\]

\[
I_3 = \frac{\begin{vmatrix}
R_1 & R_2 & E_3 - E_2 \\
0 & R_2 & 0 \\
1 & -1 & 0
\end{vmatrix}}{R_1 R_2 + (R_1 + R_2)(R_3 + R_4)} (E_1 - E_2)
\]
3-2-2 閉路電流による解法
（閉電流解析法）

枝電流解析法
枝路の数は閉路の数よりも多い ⇒ 未知数が多い
キルヒホッフの法則を2つとも用いる

閉電流解析法
閉路の数は枝路よりも少ない ⇒ 未知数が少ない
キルヒホッフの第2法則のみ用いる
（節電圧解析法に比べ）イメージ的に分かりやすい

図の閉路 a, b に閉路電流 I_a, I_b が図示の向きに流れていて、

I_a の方向と一致 閉路 a の全抵抗

\[(R_1 + R_2) I_a - R_3 I_b = E_1 - E_2 \]

I_b の方向と一致 閉路 a の起電力
\[R_3 I_a = E_1 - E_2 \]

I_b の方向と一致 閉路 b の全抵抗

\[-R_2 I_a + (R_2 + R_3 + R_4) I_b = 0 \]

I_a の方向と一致 閉路 a の全抵抗

\[E_1 - R_1 I_a - E_2 - R_2 (I_a - I_b) = 0 \] (3-24)

閉路 a

閉路 b

E_1 - R_1 I_a - E_2 - R_2 (I_a - I_b) = 0

\[-R_2 I_a + (R_2 + R_3 + R_4) I_b = 0 \] (3-26)

閉路方程式

行列表示

\[
\begin{bmatrix}
R_1 + R_2 & -R_2 \\
-R_2 & R_2 + R_3 + R_4
\end{bmatrix}
\begin{bmatrix}
I_a \\
I_b
\end{bmatrix} =
\begin{bmatrix}
E_1 - E_2 \\
0
\end{bmatrix}
\]

閉路電流 I_a, I_b と枝電流 I_1, I_2, I_3 の関係は

I_1 = I_a, \quad I_2 = I_a - I_b, \quad I_3 = I_b
誤った回路解析例

以下の解答は間違っている。この方法のどこが悪いのか、考えてみよう。

例題3-6
ホイートストンブリッジ

図の回路で、R_5 に流れる電流 I_5 を求めよ。

図(b)のように閉路電流を仮定

各閉路において電位差の総和はゼロ

閉路 a: $E - R_2(I_a - I_b) - R_3(I_a - I_c) = 0$

閉路 b: $-R_1I_b - R_3(I_b - I_c) - R_2(I_b - I_a) = 0$

閉路 c: $-R_4I_c - R_3(I_c - I_a) - R_5(I_c - I_b) = 0$

整理して

$$
egin{pmatrix}
R_5 + R_3 & -R_3 & -R_3 \\
-R_2 & R_1 + R_2 + R_3 & -R_5 \\
-R_3 & -R_5 & (R_3 + R_4 + R_5)
\end{pmatrix}
\begin{pmatrix}
I_a \\
I_b \\
I_c
\end{pmatrix}
=
\begin{pmatrix}
E \\
0 \\
0
\end{pmatrix}
$$

例題3-6
ホイートストンブリッジ

この連立方程式を解いて I_a, I_b, I_c を求める。

$I_5 = I_b - I_c$ より I_5 が求められる。
例題3-7
ブリッジの平衡条件

$I_5 = 0$ となる条件 → ブリッジの平衡条件

C点、D点が同電位であれば CD間に電流は流れない。
そのとき ACB に流れる電流を I_1，ADB に流れる電流を I_2 とすると，$R_1I_1 = R_2I_2$ が成立

\[
\frac{I_1}{I_2} = \frac{R_2}{R_1} = \frac{R_3}{R_4} \quad \text{または} \quad R_1R_3 = R_2R_4
\]

対辺の抵抗の積が等しい

3-4 合成抵抗

・複雑な回路の合成抵抗
 ➤ 回路に電源 E をつなぎ，閉路方程式を解いて流れる電流 I を求め，$R_c = E / I$ を計算
 ➤ 泛用的ではあるが，手計算では大変 → 計算機利用

図の回路の合成抵抗を求めよ

教科書の方法より Δ-Y 変換を使うほうが簡単。
左側の $2 \Omega, 5 \Omega, 10 \Omega$ からなる Δ型回路を Y型回路に変換（閉路を減らせる）

\[
R_a = \frac{2[\Omega] \cdot 5[\Omega]}{2[\Omega] + 5[\Omega] + 10[\Omega]} = \frac{10}{17} \Omega = 0.588[\Omega]
\]

\[
R_b = \frac{5[\Omega] \cdot 10[\Omega]}{2[\Omega] + 5[\Omega] + 10[\Omega]} = \frac{50}{17} \Omega = 2.94[\Omega]
\]

\[
R_c = \frac{2[\Omega] \cdot 10[\Omega]}{2[\Omega] + 5[\Omega] + 10[\Omega]} = \frac{20}{17} \Omega = 1.18[\Omega]
\]

よって

\[
R = 0.588 + \frac{(2.94 + 2)(1.18 + 5)}{(2.94 + 2)(1.18 + 5)} = 3.33[\Omega]
\]
図の回路の合成抵抗を求めよ

- 対辺の抵抗の積を計算すると等しい。
 ⇒ ブリッジ回路は平衡している。
- 図の2kΩの抵抗には電流が流れない。
 ⇒ 抵抗を外して開放にしても上辺、下辺を流れる電流は変わらない。
 ⇒ この抵抗を外して考える。
下図より直ちに

\[
R = \frac{(1000 + 200) \cdot (500 + 100)}{(1000 + 200) + (500 + 100)} = \frac{1200 \cdot 600}{1200 + 600} = 400 \text{ [Ω]}
\]

問3-8

対称形回路

図のAB間の抵抗を求めよ。

内側の3つの白い節点と黒い節点はおのおの同電位。
それらの節点をつなぐと、両端が3つの抵抗の並列接続、内側が6つの抵抗の並列接続となる。
よって

\[
R_{AB} = \frac{R}{3} + \frac{R}{6} + \frac{R}{3} = \frac{5}{6}R
\]

無限はしの形回路

図(a)の無限につながるはしの形回路において、端子A、Bから見た全抵抗を求めよ。

無限なので \(R_{AB} = R_{CD} \) を \(R_x \) とすると図(b)のように

\[
R_x = R_1 + \frac{1}{R_2 + \frac{1}{R_x}} = R_1 + \frac{R_2R_x}{R_2 + R_x}
\]

\[
R_x^2 - R_1R_x - R_1R_2 = 0 \quad \therefore R_x = \frac{R_1 + \sqrt{R_1^2 + 4R_1R_2}}{2}
\]

無限抵抗線格子網

図に示すような抵抗線からなる無限の格子網がある。
1辺が \(R \) [Ω] とすると、AB間の全抵抗はいくらか。

まず、A点に \(I \) [A] の電流を流し込むと、4方向に均一に \(I/4 \) [A] ずつ流れ出る。
逆に、B点から \(I \) [A] の電流を吸い取ると、4方向から均一に \(I/4 \) [A] ずつ集まってくる。
これを同時に運行すると、AB間では合計 \(I/2 \) [A] 流れる。
電圧降下は \(V_{AB} = R \times I/2 \) [V] となり、全抵抗は

\[
R_{AB} = \frac{V_{AB}}{I} = \frac{R}{2}
\]